Let $X \in \text{ChiSquared}(n)$ be a D212: Chi-squared random unsigned real number such that
Let $\ell$ be the D5645: Real Lebesgue measure.
Let $t \in \mathbb{R}$ be a D993: Real number.
(i) | $\mu_X$ is a D204: Probability distribution measure for $X$ |
Let $t \in \mathbb{R}$ be a D993: Real number.
Then
\begin{equation}
\frac{d \mu_X}{d \ell} (t)
= \frac{1}{2^{n / 2} \Gamma( n / 2 )} t^{\frac{n}{2} - 1} e^{- t / 2} I_{[0, \infty)} (t)
\end{equation}