Let $z \mapsto f(z) : = \sum_{n = 0}^N a_n z^n$ be a D4312: Complex polynomial function such that
(i) | \begin{equation} \forall \, z \in \mathbb{C} \left( f(z) = 0 \quad \implies \quad |z| \leq 1 \right) \end{equation} |
(ii) | \begin{equation} \mathsf{Ker}(f) : = \{ z \in \mathbb{C} : f(z) = 0 \} \end{equation} |
Then
\begin{equation}
\forall \, z \in \mathbb{C}
\left( f'(z) = 0 \quad \implies \quad \exists \, z_0 \in \mathsf{Ker}(f) : |z - z_0| \leq 1 \right)
\end{equation}