(i) | $\prod_{n = 1}^N X_n$ is a D326: Cartesian product for $X_1, \ldots, X_N$ |
(1) | \begin{equation} X = \prod_{n = 1}^N X_n \end{equation} |
(2) | \begin{equation} R \subseteq \prod_{n = 1}^N X_n \end{equation} |
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Binary cartesian set product |
▼ | Binary relation |
▼ | Relation |
(i) | $\prod_{n = 1}^N X_n$ is a D326: Cartesian product for $X_1, \ldots, X_N$ |
(1) | \begin{equation} X = \prod_{n = 1}^N X_n \end{equation} |
(2) | \begin{equation} R \subseteq \prod_{n = 1}^N X_n \end{equation} |
▶ | D4: Binary relation |