ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Definition D357
Left-unique binary relation
Formulation 0
A D4: Binary relation $(X \times Y, R)$ is left-unique if and only if \begin{equation} \forall \, x, x' \in X : \forall \, y \in Y \left( (x, y), (x', y) \in R \quad \implies \quad x = x' \right) \end{equation}
Formulation 1
A D4: Binary relation $(X \times Y, R)$ is left-unique if and only if \begin{equation} \forall \, x, x' \in X : \forall \, y \in Y \left( x R y, x ' R y \quad \implies \quad x = x' \right) \end{equation}