ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Function
Unsigned function
Unsigned Euclidean function
Unsigned basic function
Unsigned real function
Absolute value function
Real distance function
Definition D364
Euclidean distance function
Formulation 1
Let $\mathbb{R}^N$ be a D1256: Euclidean real vector space.
Let $|\cdot| : \mathbb{R} \to [0, \infty)$ be the D412: Absolute value function.
The euclidean distance function on $\mathbb{R}^N$ is the D4367: Unsigned real function \begin{equation} \mathbb{R}^N \times \mathbb{R}^N \to [0, \infty), \quad (x, y) \mapsto \left( \sum_{n = 1}^N |x_n - y_n|^2 \right)^{1/2} \end{equation}