ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Definition D527
Composite map
Formulation 0
Let $f : X \to Y$ and $g : Y \to Z$ each be a D18: Map.
A D18: Map $h : X \to Z$ is a composite of $f$ with $g$ if and only if \begin{equation} \forall \, x \in X : h(x) = g(f(x)) \end{equation}
Results
R1973: Map composition is associative
R4308: Map composition need not be commutative