Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
Composite map
Formulation 0
Let $f : X \to Y$ and $g : Y \to Z$ each be a
D18: Map
.
A
D18: Map
$h : X \to Z$ is a
composite
of $f$ with $g$ if and only if \begin{equation} \forall \, x \in X : h(x) = g(f(x)) \end{equation}
Results
»
R4308: Map composition need not be commutative
»
R1973: Map composition is associative