Let $f : X \to Y$ and $g : Y \to Z$ each be a D18: Map.
A D18: Map $h : X \to Z$ is a composite of $f$ with $g$ if and only if
\begin{equation}
\forall \, x \in X : h(x) = g(f(x))
\end{equation}
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Binary cartesian set product |
▼ | Binary relation |
▼ | Map |
▶ | R1973: Map composition is associative |
▶ | R4308: Map composition need not be commutative |