Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Structure
▾
Algebraic structure
Left identity element
Formulation 0
Let $S = (X, +)$ be an
D21: Algebraic structure
such that
(i)
\begin{equation} X \neq \emptyset \end{equation}
A
D2218: Set element
$y \in X$ is a
left identity element
in $S$ if and only if \begin{equation} \forall \, x \in X : y + x = x \end{equation}
Formulation 1
Let $S = (X, \times)$ be an
D21: Algebraic structure
such that
(i)
\begin{equation} X \neq \emptyset \end{equation}
A
D2218: Set element
$y \in X$ is a
left identity element
in $S$ if and only if \begin{equation} \forall \, x \in X : y x = x \end{equation}
Formulation 2
Let $S = (X, f)$ be an
D21: Algebraic structure
such that
(i)
\begin{equation} X \neq \emptyset \end{equation}
A
D2218: Set element
$y \in X$ is a
left identity element
in $S$ if and only if \begin{equation} \forall \, x \in X : f(y, x) = x \end{equation}