Let $\mathbb{C}$ be the D372: Set of complex numbers.

The

**complex cartesian product**with respect to $J$ is the D11: Set \begin{equation} \mathbb{C}^J : = \prod_{j \in J} \mathbb{C} : = \{ z \mid z : J \to \mathbb{C} \} \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Cartesian product

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Cartesian product

Formulation 0

Let $J$ be a D11: Set.

Let $\mathbb{C}$ be the D372: Set of complex numbers.

The**complex cartesian product** with respect to $J$ is the D11: Set
\begin{equation}
\mathbb{C}^J
: = \prod_{j \in J} \mathbb{C}
: = \{ z \mid z : J \to \mathbb{C} \}
\end{equation}

Let $\mathbb{C}$ be the D372: Set of complex numbers.

The

Child definitions