ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Function
Unsigned function
Unsigned Realll func function
Complex euclidean P-length function
Definition D5951
Euclidean P-length function
Formulation 0
Let $\mathbb{R}^N$ be a D5630: Set of euclidean real numbers.
Let $|\cdot| : \mathbb{R} \to [0, \infty)$ be the D412: Absolute value function.
The euclidean P-length function on $\mathbb{R}^N$ with respect to $p \in (0, \infty)$ is the D4365: Unsigned Realll func function \begin{equation} \Vert \cdot \Vert_p : \mathbb{R}^N \to [0, \infty), \quad \Vert x \Vert_p = \left( \sum_{n = 1}^N |x_n|^p \right)^{1 / p} \end{equation}
Children
D1383: Euclidean length function