The

**complex conjugation operation**on $\mathbb{C}$ is the D20: Enclosed binary operation \begin{equation} \mathbb{C} \to \mathbb{C}, \quad (x, y) \mapsto (x, - y) \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Operation

▾ N-operation

▾ Binary operation

▾ Enclosed binary operation

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Operation

▾ N-operation

▾ Binary operation

▾ Enclosed binary operation

Formulation 0

Let $\mathbb{C}$ be the D372: Set of complex numbers.

The**complex conjugation operation** on $\mathbb{C}$ is the D20: Enclosed binary operation
\begin{equation}
\mathbb{C} \to \mathbb{C}, \quad (x, y) \mapsto (x, - y)
\end{equation}

The