Let $\mathbb{N}$ be the D225: Set of natural numbers.
The standard Hilbert cube is the D11: Set
\begin{equation}
\prod_{n \in \mathbb{N} + 1} [0, 1 / n]
\end{equation}
Let $\mathbb{N}$ be the D225: Set of natural numbers.
The standard Hilbert cube is the D11: Set
\begin{equation}
\prod_{n = 1}^{\infty}
\textstyle [0, \frac{1}{n}]
\end{equation}
Let $\mathbb{N}$ be the D225: Set of natural numbers.
The standard Hilbert cube is the D11: Set
\begin{equation}
\textstyle
[0, 1] \times [0, \frac{1}{2}] \times [0, \frac{1}{3}] \times [0, \frac{1}{4}] \times \cdots
\end{equation}