Let $f : X \to Y$ be a D18: Map.
Then $f$ is right-invertible if and only if there exists a D18: Map $g : Y \to X$ such that
\begin{equation}
\forall \, y \in Y : f(g(y)) = y
\end{equation}
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Structure |
▼ | Algebraic structure |
▼ | Identity element |
▼ | Right inverse element |
▼ | Right inverse map |