Let $b \in (0, \infty)$ be a positive real number. Using
R3184: Second fundamental theorem of Riemann integral calculus, we have
\begin{equation}
\int^b_0 q^t \, d t
= \left[ q^t \log q \right]^b_0
= q^b \log q - q^0 \log q
= q^b \log q - \log q
\end{equation}
Since $q^b \to 0$ as $b \to \infty$, then
\begin{equation}
\int^{\infty}_0 q^t \, d t
= - \log q
\end{equation}
$\square$