ThmDex – An index of mathematical definitions, results, and conjectures.
Result R1036 on D80: Power set
Power set is closed under complements
Formulation 0
Let $X$ be a D11: Set such that
(i) $\mathcal{P}(X)$ is the D80: Power set of $X$
(ii) $E \in \mathcal{P}(X)$
Then \begin{equation} X \setminus E \in \mathcal{P}(X) \end{equation}
Formulation 1
Let $X$ be a D11: Set.
Then \begin{equation} \forall \, E \in \mathcal{P}(X) : E^{\complement} \in \mathcal{P}(X) \end{equation}
Formulation 2
Let $X$ be a D11: Set.
Then \begin{equation} \forall \, E \subseteq X : X \setminus E \subseteq X \end{equation}
Formulation 3
Let $X$ be a D11: Set.
Then \begin{equation} \forall \, E \subseteq X : E^{\complement} \subseteq X \end{equation}
Proofs
Proof 0
Let $X$ be a D11: Set such that
(i) $\mathcal{P}(X)$ is the D80: Power set of $X$
(ii) $E \in \mathcal{P}(X)$