Let $[a, b] \subseteq \mathbb{R}$ be a D544: Closed real interval such that
(i) | \begin{equation} [a, b] \neq \emptyset \end{equation} |
(ii) | $f : [a, b] \to \mathbb{R}$ is a D5231: Standard-continuous real function on $[a, b]$ |
Then
\begin{equation}
\exists \, m, M \in [a, b] : \forall \, x \in [a, b] : f(m) \leq f(x) \leq f(M)
\end{equation}