Let $M = (\mathbb{R}^n, \mathcal{L}, \mu)$ be a D1744: Lebesgue measure space.
Let $x \in \mathbb{R}^n$ be a D4924: Euclidean real number.
Let $x \in \mathbb{R}^n$ be a D4924: Euclidean real number.
Then
(1) | $\forall \, E \in \mathcal{L} : E + x \in \mathcal{L}$ |
(2) | $\forall \, E \in \mathcal{L} : \mu(E + x) = \mu(E)$ |