Let $I$ and $J$ each be a Euclidean real interval such that $I \subseteq J$. By definition, each of $I$ and $J$ are finite Cartesian products of some basic real intervals $I^i_1, \dots, I^i_N$ and $I^j_1, \dots, I^j_N$, respectively. Denote the respective endpoints of these intervals as $a^i_1, b^i_1, \dots, a^i_N, b^i_N$ and $a^j_1, b^j_1, \dots, a^j_N, b^j_N$. Since $I$ is contained in $J$, then the inequality
\begin{equation}
|b^i_n - a^i_n| \leq |b^j_n - a^j_n|
\end{equation}
holds for every $1 \leq n \leq N$. Result
R1937: Monotonicity of finite unsigned real multiplication now implies
\begin{equation}
\begin{split}
\mathsf{Vol}(I) & = \mathsf{Vol} \Bigl( \prod_{n = 1}^N I^i_n \Bigr) \\
& = \prod_{n = 1}^N |b^i_n - a^i_n| \\
& \leq \prod_{n = 1}^N |b^j_n - a^j_n| \\
& = \mathsf{Vol} \Bigl( \prod_{n = 1}^N I^j_n \Bigr) \\
& = \mathsf{Vol}(J) \\
\end{split}
\end{equation}
$\square$