Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space such that
(i) | $f_0, f_1, f_2, \ldots : X \to [0, \infty]$ are each a D5600: Basic Borel function on $M$ |
Then
\begin{equation}
\int_X \sum_{n \in \mathbb{N}} f_n \, d \mu
= \sum_{n \in \mathbb{N}} \int_X f_n \, d \mu
\end{equation}