ThmDex – An index of mathematical definitions, results, and conjectures.
Result R1839 on D15: Set cardinality
Cardinality of power set of a finite set
Formulation 0
Let $X$ be a D17: Finite set such that
(i) $\mathcal{P}(X)$ is the D80: Power set of $X$
Then \begin{equation} |\mathcal{P}(X)| = 2^{|X|} \end{equation}
Formulation 1
Let $X$ be a D11: Set such that
(i) \begin{equation} N : = |X| < \infty \end{equation}
(ii) $\mathcal{P}(X)$ is the D80: Power set of $X$
Then \begin{equation} |\mathcal{P}(X)| = 2^N \end{equation}
Formulation 2
Let $X$ be a D17: Finite set.
Then \begin{equation} \# \{ E : E \subseteq X \} = 2^{|X|} \end{equation}
Subresults
R4309: Number of N-ary relations on a finite cartesian product
Proofs
Proof 0
Let $X$ be a D17: Finite set such that
(i) $\mathcal{P}(X)$ is the D80: Power set of $X$
Let $\mathcal{M} : = \{ 0, 1 \}^X$ denote the D68: Set of maps from $X$ to $\{ 0, 1 \}$. Result R1841: Indicator function operator is a bijection shows that \begin{equation} |\mathcal{P}(X)| = |\mathcal{M}| \end{equation} and result R4314: Number of boolean functions on a finite set shows that \begin{equation} |\mathcal{M}| = 2^{|X|} \end{equation} $\square$