Let $x_1, \ldots, x_N \in [0, \infty)$ each be an D4767: Unsigned real number.
Let $\lambda_1, \ldots, \lambda_N \in (0, \infty)$ each be a D5407: Positive real number such that
Let $\lambda_1, \ldots, \lambda_N \in (0, \infty)$ each be a D5407: Positive real number such that
(i) | \begin{equation} \sum_{n = 1}^N \frac{1}{\lambda_n} = 1 \end{equation} |
Then
(1) | \begin{equation} \prod_{n = 1}^N x_n \leq \sum_{n = 1}^N \frac{1}{\lambda_n} x^{\lambda_n}_n \end{equation} |
(2) | \begin{equation} \prod_{n = 1}^N x_n = \sum_{n = 1}^N \frac{1}{\lambda_n} x^{\lambda_n}_n \quad \iff \quad x^{\lambda_1}_1 = x^{\lambda_2}_2 = \cdots = x^{\lambda_N}_N \end{equation} |