ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2062 on D70: Set difference
Antitonicity of subtracting from the same set
Formulation 0
Let $X, Y, Z$ each be a D11: Set such that
(i) \begin{equation} Y \supseteq Z \end{equation}
Then \begin{equation} X \setminus Y \subseteq X \setminus Z \end{equation}
Formulation 1
Let $X, Y, Z$ each be a D11: Set.
Then \begin{equation} Z \subseteq Y \quad \implies \quad X \setminus Y \subseteq X \setminus Z \end{equation}
Proofs
Proof 0
Let $X, Y, Z$ each be a D11: Set such that
(i) \begin{equation} Y \supseteq Z \end{equation}
If $X \setminus Y$ is empty, then the claim holds due to R7: Empty set is subset of every set.

Suppose thus that $X \setminus Y$ is not empty and let $x \in X \setminus Y$. Then $x \in X$ and $x \not\in Y$. Since $Z$ is a subset of $Y$, it must be true that $x$ is not in $Z$ either. But now, by definition, $x \in X \setminus Z$. Since $x \in X \setminus Y$ was arbitrary, the claim follows. $\square$