Let $Z : = \{ (x, y) \in \mathbb{C} : x > 0 \}$ be the D3740: Complex open right half-plane such that
(i) | $\Gamma : Z \to \mathbb{C}$ is the D258: Gamma function |
Then
\begin{equation}
\forall \, z \in Z :
\Gamma(z + 1) = z \Gamma(z)
\end{equation}