ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2295 on D258: Gamma function
Unit increment property of the gamma function
Formulation 0
Let $Z : = \{ (x, y) \in \mathbb{C} : x > 0 \}$ be the D3740: Complex open right half-plane such that
(i) $\Gamma : Z \to \mathbb{C}$ is the D258: Gamma function
Then \begin{equation} \forall \, z \in Z : \Gamma(z + 1) = z \Gamma(z) \end{equation}
Proofs
Proof 0
Let $Z : = \{ (x, y) \in \mathbb{C} : x > 0 \}$ be the D3740: Complex open right half-plane such that
(i) $\Gamma : Z \to \mathbb{C}$ is the D258: Gamma function
Fix $z \in Z$. Applying integration by parts, one has \begin{equation} \begin{split} \Gamma(z + 1) & = \int^{\infty}_0 t^z e^{- t} \, d t \\ & = \left[ - t^z e^{- t} \right]^{\infty}_0 + z \int^{\infty}_0 t^{z - 1} e^{- t} \, d t \\ & = \lim_{b \to \infty} (- b^z e^{- b}) + 0 + z \Gamma(z) \\ & = z \Gamma(z) \end{split} \end{equation} $\square$