Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space.
Let $Y, X_0, X_1, X_2, \dots \in \mathsf{Random}(\Omega \to \mathbb{R}^K)$ each be a D4383: Random euclidean real number on $P$ such that
Let $Y, X_0, X_1, X_2, \dots \in \mathsf{Random}(\Omega \to \mathbb{R}^K)$ each be a D4383: Random euclidean real number on $P$ such that
(i) | \begin{equation} X_n \overset{a.s.}{\longrightarrow} Y \quad \text{ as } \quad n \to \infty \end{equation} |
Then
\begin{equation}
X_n \overset{p}{\longrightarrow} Y
\quad \text{ as } \quad
n \to \infty
\end{equation}