Let $I$ be an D1247: Inner product-normed vector space such that
(i) | $\langle \cdot, \cdot \rangle$ is the D34: Inner product in $I$ |
(ii) | $\Vert \cdot \Vert$ is the D504: Inner product norm in $I$ |
(iii) | $x, y \in I$ are each a D1129: Vector in $I$ |
Then
\begin{equation}
\Vert x + y \Vert^2 + \Vert x - y \Vert^2 = 2 \Vert x \Vert^2 + 2 \Vert y \Vert^2
\end{equation}