Processing math: 58%
ThmDex – An index of mathematical definitions, results, and conjectures.
Result R249 on D63: Finite sequence
Cauchy-Schwarz inequality for finite real sequences
Formulation 0
Let x1,y1,,xN,yNR each be a D993: Real number.
Then
(1) |Nn=1xnyn|(Nn=1xn)1/2(Nn=1yn)1/2
(2) |Nn=1xnyn|=(Nn=1xn)1/2(Nn=1yn)1/2x1y1=x2y2==xNyN
Formulation 1
Let x,yRN×1 each be a D5200: Real column matrix.
Then
(1) |xTy|xTxyTy
(2) |xTy|=xTxyTyx1y1=x2y2==xNyN
Formulation 2
Let x,yRN×1 each be a D5200: Real column matrix.
Then
(1) |xTy|
(2) \begin{equation} \left| x^T y \right| = \Vert x \Vert_2 \Vert y \Vert_2 \quad \iff \quad \frac{x_1}{y_1} = \frac{x_2}{y_2} = \cdots = \frac{x_N}{y_N} \end{equation}
Formulation 3
Let x, y \in \mathbb{R}^{N \times 1} each be a D5200: Real column matrix.
Then
(1) \begin{equation} \left| x \cdot y \right| \leq \sqrt{x \cdot x} \sqrt{y \cdot y} \end{equation}
(2) \begin{equation} \left| x \cdot y \right| = \sqrt{x \cdot x} \sqrt{y \cdot y} \quad \iff \quad \frac{x_1}{y_1} = \frac{x_2}{y_2} = \cdots = \frac{x_N}{y_N} \end{equation}
Also known as
Cauchy-Schwarz inequality for real column matrices