ThmDex – An index of mathematical definitions, results, and conjectures.
Euclidean real martingale is constant in expectation
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P},\{ \mathcal{G}_j \}_{j \in J})$ be a D1726: Filtered probability space such that
(i) $X : J \to \mathsf{Random}(\Omega \to \mathbb{R}^D)$ is a D5710: Euclidean real martingale on $P$
Then \begin{equation} \forall \, i, j \in J : \mathbb{E}(X_i) = \mathbb{E}(X_j) \end{equation}
Formulation 2
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : J \to \mathsf{Random}(\Omega \to \mathbb{R}^D)$ is a D5141: Random euclidean real collection on $P$
(ii) $\mathcal{G} = \{ \mathcal{G}_j \}_{j \in J}$ is a D3346: Sigma-algebra filtration on $P$
(iii) $(X, \mathcal{G})$ is a D5710: Euclidean real martingale on $P$
Then \begin{equation} \forall \, i, j \in J : \mathbb{E}(X_i) = \mathbb{E}(X_j) \end{equation}
Proofs
Proof 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P},\{ \mathcal{G}_j \}_{j \in J})$ be a D1726: Filtered probability space such that
(i) $X : J \to \mathsf{Random}(\Omega \to \mathbb{R}^D)$ is a D5710: Euclidean real martingale on $P$
If $J$ is empty or a singleton, then the claim is vacuously true, so assume $J$ has at least two elements and let $i, j \in J$ such that $i \neq j$. Since $J$ is an ordered set and since $i$ and $j$ are distinct, we may assume without loss of generality that $i < j$. Since $X$ is a martingale on $P$, then $\mathbb{E}(X_j \mid \mathcal{G}_i) \overset{a.s.}{=} X_i$ and thus \begin{equation} \mathbb{E}(\mathbb{E}(X_j \mid \mathcal{G}_i)) = \mathbb{E} (X_i) \end{equation} On the other hand, result R2150: Expectation of conditional expectation for a random euclidean real number shows that \begin{equation} \mathbb{E}(\mathbb{E}(X_j \mid \mathcal{G}_i)) = \mathbb{E}(X_j) \end{equation} Combining the above two equations then gives \begin{equation} \mathbb{E} (X_i) = \mathbb{E}(\mathbb{E}(X_j \mid \mathcal{G}_i)) = \mathbb{E}(X_j) \end{equation} This finishes the proof. $\square$