ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2786 on D2167: Binomial coefficient
Complement property of binomial coefficient
Formulation 0
Let $n, m \in \mathbb{N}$ each be a D996: Natural number such that
(i) \begin{equation} 0 \leq m \leq n \end{equation}
Then \begin{equation} \binom{n}{m} = \binom{n}{n - m} \end{equation}
Proofs
Proof 0
Let $n, m \in \mathbb{N}$ each be a D996: Natural number such that
(i) \begin{equation} 0 \leq m \leq n \end{equation}
Applying R1831: Real arithmetic expression for binomial coefficient, one has \begin{equation} \begin{split} \binom{n}{n - m} = \frac{n!}{(n - (n - m))! (n - m)!} & = \frac{n!}{m! (n - m)!} \\ & = \frac{n!}{(n - m)! m!} \\ & = \binom{n}{m} \end{split} \end{equation} $\square$