Proceed by weak induction on $n$ over $\mathbb{N}$. The case $n = 0$ follows from the result
R5671: Extreme values for binomial coefficient since
\begin{equation}
(x + y)^0
= 1
= \binom{0}{0}
= \sum_{m = 0}^0 \binom{0}{m} x^m y^{-m}
\end{equation}
Suppose then that the claim holds for some $n \geq 0$. Using result
R5670: , we have
\begin{equation}
\begin{split}
(x + y)^{n + 1}
& = (x + y) (x + y)^n \\
& = (x + y) \sum_{m = 0}^n \binom{n}{m} x^m y^{n - m} \\
& = x \sum_{m = 0}^n \binom{n}{m} x^m y^{n - m} + y \sum_{m = 0}^n \binom{n}{m} x^m y^{n - m} \\
& = \sum_{m = 0}^n \binom{n}{m} x^{m + 1} y^{n - m} + \sum_{m = 0}^n \binom{n}{m} x^m y^{n + 1 - m} \\
& = \sum_{m = 1}^n \binom{n}{m - 1} x^{m} y^{n + 1 - m} + \sum_{m = 1}^n \binom{n}{m} x^m y^{n + 1 - m} + \binom{n}{0} x^0 y^{n + 1} \\
& = \sum_{m = 1}^n \binom{n + 1}{m} x^{m} y^{n + 1 - m} + \binom{n}{0} x^0 y^{n + 1} \\
& = \sum_{m = 1}^n \binom{n + 1}{m} x^{m} y^{n + 1 - m} + \binom{n + 1}{0} x^0 y^{n + 1} \\
& = \sum_{m = 0}^n \binom{n + 1}{m} x^{m} y^{n + 1 - m} \\
& = \sum_{m = 0}^{n + 1} \binom{n}{m} x^{m} y^{n - m} \\
\end{split}
\end{equation}
The claim now follows from
R5104: Proof by principle of weak mathematical induction on the natural numbers. $\square$