ThmDex – An index of mathematical definitions, results, and conjectures.
Real mean value inequality
Formulation 0
Let $[a, b] \subseteq \mathbb{R}$ be a D544: Closed real interval such that
(i) \begin{equation} a < b \end{equation}
(ii) $f : [a, b] \to \mathbb{R}$ is a D5614: Differentiable real function on $(a, b)$
Then
(1) \begin{equation} |f(b) - f(a)| \leq \sup_{x \in (a, b)} |f'(x)| |b - a| \end{equation}
(2) \begin{equation} \exists \, m, M \in \mathbb{R} : m \leq f' \leq M \quad \implies \quad m \leq \frac{f(b) - f(a)}{b - a} \leq M \end{equation}
Proofs
Proof 0
Let $[a, b] \subseteq \mathbb{R}$ be a D544: Closed real interval such that
(i) \begin{equation} a < b \end{equation}
(ii) $f : [a, b] \to \mathbb{R}$ is a D5614: Differentiable real function on $(a, b)$
Result R1073: Mean value theorem shows that there exists $c \in (a, b)$ such that \begin{equation} f(b) - f(a) = f'(c)(b - a) \end{equation} Applying result R1108: Monotonicity of supremum, we then have \begin{equation} |f(b) - f(a)| = |f'(c)||b - a| \leq |b - a| \sup_{x \in (a, b)} |f'(x)| \end{equation} This concludes the first claim. Suppose then that $f'$ is bounded with a lower bound $m \in \mathbb{R}$ and an upper bound $M \in \mathbb{R}$. Then results
(i) R1073: Mean value theorem
(ii) R1937: Monotonicity of finite unsigned real multiplication

imply \begin{equation} f(b) - f(a) = f'(c) (b - a) \leq M (b - a) \end{equation} as well as \begin{equation} f(b) - f(a) = f'(c) (b - a) \geq m (b - a) \end{equation} $\square$