ThmDex – An index of mathematical definitions, results, and conjectures.
Finite sum of even euclidean real functions is even
Formulation 0
Let $f_1, \dots, f_N : \mathbb{R}^K \to \mathbb{R}^H$ each be an D3997: Even euclidean real function such that
(i) $\sum_{n = 1}^N f_n$ is the D4344: Pointwise function sum of $f_1, \dots, f_N$
Then $\sum_{n = 1}^N f_n$ is an D3997: Even euclidean real function.
Proofs
Proof 0
Let $f_1, \dots, f_N : \mathbb{R}^K \to \mathbb{R}^H$ each be an D3997: Even euclidean real function such that
(i) $\sum_{n = 1}^N f_n$ is the D4344: Pointwise function sum of $f_1, \dots, f_N$
If $x \in \mathbb{R}^K$, then \begin{equation} \left( \sum_{n = 1}^N f_n \right)(-x) = \sum_{n = 1}^N f_n(-x) = \sum_{n = 1}^N f_n(x) = \left( \sum_{n = 1}^N f_n \right)(x) \end{equation} $\square$