ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2955 on D336: Convergent sequence
Reciprocal positive integer sequence converges to zero
Formulation 0
Let $x_1, x_2, x_3, \ldots \in \mathbb{Q}$ each be a D994: Rational number such that
(i) \begin{equation} x_n = \frac{1}{n} \end{equation}
Then \begin{equation} \lim_{n \to \infty} x_n = 0 \end{equation}
Proofs
Proof 0
Let $x_1, x_2, x_3, \ldots \in \mathbb{Q}$ each be a D994: Rational number such that
(i) \begin{equation} x_n = \frac{1}{n} \end{equation}
Let $\varepsilon > 0$ and choose $n$ such that $n > 1 / \varepsilon$. Then \begin{equation} \begin{split} \left| \frac{1}{n} \right| = \frac{1}{n} < \varepsilon \end{split} \end{equation} Since $\varepsilon > 0$ was arbitrary, the claim follows due to R1089: Characterisation of convergent sequences in metric space. $\square$