Let $\mathbb{R}$ form the D2010: Ordered vector space of real numbers.
Let $I \subseteq \mathbb{R}$ be a D1284: Real interval.
Let $c \in \mathbb{R}$.
Let $I \subseteq \mathbb{R}$ be a D1284: Real interval.
Let $c \in \mathbb{R}$.
Then
(1) | $I = (a, b) \quad \Rightarrow \quad I + c = (a + c, b + c)$ |
(2) | $I = [a, b) \quad \Rightarrow \quad I + c = [a + c, b + c)$ |
(3) | $I = (a, b] \quad \Rightarrow \quad I + c = (a + c, b + c]$ |
(4) | $I = [a, b] \quad \Rightarrow \quad I + c = [a + c, b + c]$ |