ThmDex – An index of mathematical definitions, results, and conjectures.
Riemann integral of even real function over an interval symmetric abour zero
Formulation 0
Let $[- a, a] \subseteq \mathbb{R}$ be a D544: Closed real interval such that
(i) $f : [- a, a] \to \mathbb{R}$ is a D1760: Riemann integrable real function on $[- a, a]$
(ii) $f$ is an D5480: Even real function
Then \begin{equation} \int^a_{-a} f(x) \, d x = 2 \int^a_0 f(x) \, d x \end{equation}
Proofs
Proof 0
Let $[- a, a] \subseteq \mathbb{R}$ be a D544: Closed real interval such that
(i) $f : [- a, a] \to \mathbb{R}$ is a D1760: Riemann integrable real function on $[- a, a]$
(ii) $f$ is an D5480: Even real function
Applying results
(i) R4288:
(ii) R3061: Real Riemann integral over a reflected interval

we have \begin{equation} \begin{split} \int^a_{-a} f(x) \, d x & = \int^a_0 f(x) \, d x + \int^0_{-a} f(x) \, d x \\ & = \int^a_0 f(x) \, d x + \int^a_0 f(-x) \, d x \\ & = \int^a_0 f(x) \, d x + \int^a_0 f(x) \, d x \\ & = 2 \int^a_0 f(x) \, d x \end{split} \end{equation} $\square$