ThmDex – An index of mathematical definitions, results, and conjectures.
Unsigned basic expectation over set of probability zero is zero
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathbb{P}(E) = 0$ for $E \in \mathcal{F}$
Let $X : \Omega \to [0, \infty]$ be a D5101: Random unsigned basic number on $P$.
Then \begin{equation} \mathbb{E}(X I_E) = 0 \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathbb{P}(E) = 0$ for $E \in \mathcal{F}$
Let $X : \Omega \to [0, \infty]$ be a D5101: Random unsigned basic number on $P$.
Then \begin{equation} \int_E X \, d \mathbb{P} = 0 \end{equation}
Proofs
Proof 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathbb{P}(E) = 0$ for $E \in \mathcal{F}$
Let $X : \Omega \to [0, \infty]$ be a D5101: Random unsigned basic number on $P$.
This result is a particular case of R3512: Unsigned basic integral over set of measure zero is zero. $\square$