ThmDex – An index of mathematical definitions, results, and conjectures.
Result R3529 on D2948: Sublevel set
Tautological pointwise inequality from indicator functions on sublevel sets
Formulation 0
Let $f, g : X \to [-\infty, \infty]$ each be a D3180: Basic function.
Then \begin{equation} f I_{\{ f < g \}} \leq g I_{\{ f < g \}} \end{equation}
Subresults
R3532: Tautological pointwise lower bound from indicator function on sublevel set
Proofs
Proof 0
Let $f, g : X \to [-\infty, \infty]$ each be a D3180: Basic function.
If $X$ is an empty set, then the inequality is vacuously true everywhere, so assume that $X$ is nonempty and let $x \in X$.

If $f(x) < g(x)$, then $I_{\{ f < g \}}(x) = 1$ and \begin{equation} f(x) I_{\{ f < g \}}(x) = f(x) < g(x) = g(x) I_{\{ f < g \}}(x) \end{equation} If $f(x) \geq g(x)$, then $I_{\{ f < g \}}(x) = 0$ and \begin{equation} f(x) I_{\{ f < g \}}(x) = f(x) \cdot 0 = 0 = g(x) \cdot 0 = g(x) I_{\{ f < g \}}(x) \end{equation} $\square$