Let $x_1, \dots, x_N \in [0, \infty)$ each be an D4767: Unsigned real number.
Then
(1) | \begin{equation} \left( \prod_{n = 1}^N x_n \right)^{\frac{1}{N}} \leq \frac{1}{N} \sum_{n = 1}^N x_n \end{equation} |
(2) | \begin{equation} \left( \prod_{n = 1}^N x_n \right)^{\frac{1}{N}} = \frac{1}{N} \sum_{n = 1}^N x_n \quad \iff \quad x_1 = x_2 = \cdots = x_N \end{equation} |