ThmDex – An index of mathematical definitions, results, and conjectures.
Random basic number almost surely finite iff positive and negative parts are
Formulation 0
Let $X \in \mathsf{Random}(\to [-\infty, \infty])$ be a D4381: Random basic number.
Then $|X| \overset{a.s.}{<} \infty$ if and only if
(1) \begin{equation} X^+ \overset{a.s.}{<} \infty \end{equation}
(2) \begin{equation} X^- \overset{a.s.}{<} \infty \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : \Omega \to [-\infty, \infty]$ is a D4381: Random basic number on $P$
Then $\mathbb{P}(|X| < \infty) = 1$ if and only if
(1) \begin{equation} \mathbb{P}(X^+ < \infty) = 1 \end{equation}
(2) \begin{equation} \mathbb{P}(X^- < \infty) = 1 \end{equation}
Proofs
Proof 0
Let $X \in \mathsf{Random}(\to [-\infty, \infty])$ be a D4381: Random basic number.