ThmDex – An index of mathematical definitions, results, and conjectures.
Random basic number almost surely finite if first absolute moment is finite
Formulation 0
Let $X \in \text{Random} [-\infty, \infty]$ be a D4381: Random basic number such that
(i) \begin{equation} \mathbb{E} |X| < \infty \end{equation}
Then \begin{equation} |X| \overset{a.s.}{<} \infty \end{equation}
Formulation 1
Let $X \in \text{Random} [-\infty, \infty]$ be a D4381: Random basic number such that
(i) \begin{equation} \mathbb{E} |X| < \infty \end{equation}
Then \begin{equation} \mathbb{P}(|X| < \infty) = 1 \end{equation}
Subresults
R5008: Random unsigned basic number almost surely finite if expectation is finite
Proofs
Proof 0
Let $X \in \text{Random} [-\infty, \infty]$ be a D4381: Random basic number such that
(i) \begin{equation} \mathbb{E} |X| < \infty \end{equation}