Let $X_1, X_2, X_3, \dots \in \text{Poisson}(1)$ each be a D2854: Poisson random natural number such that
(i) | $X_1, X_2, X_3, \dots$ is an D2713: Independent random collection |
Then
\begin{equation}
\sum_{n = 1}^N \frac{X_n - 1}{\sqrt{N}} \overset{d}{\longrightarrow} \text{Gaussian}(0, 1)
\quad \text{ as } \quad
N \to \infty
\end{equation}