ThmDex – An index of mathematical definitions, results, and conjectures.
Expectation of conditional probability
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathcal{G} \subseteq \mathcal{F}$ is a D470: Subsigma-algebra of $\mathcal{F}$ on $\Omega$
(ii) $E \in \mathcal{F}$ is an D1716: Event in $P$
Then \begin{equation} \mathbb{E}(\mathbb{P}(E \mid \mathcal{G})) = \mathbb{P}(E) \end{equation}
Subresults
R2677: Law of total probability for a countable partition of events of positive probability
Proofs
Proof 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathcal{G} \subseteq \mathcal{F}$ is a D470: Subsigma-algebra of $\mathcal{F}$ on $\Omega$
(ii) $E \in \mathcal{F}$ is an D1716: Event in $P$
By definition, $\mathbb{P}(E \mid \mathcal{G}) : = \mathbb{E}(I_E \mid \mathcal{G})$. Applying results
(i) R2150: Expectation of conditional expectation for a random euclidean real number
(ii) R2089: Unsigned basic expectation is compatible with probability measure

one then has \begin{equation} \mathbb{E}(\mathbb{P}(E \mid \mathcal{G})) = \mathbb{E}(\mathbb{E}(I_E \mid \mathcal{G})) = \mathbb{E}(I_E) = \mathbb{P}(E) \end{equation} $\square$