ThmDex – An index of mathematical definitions, results, and conjectures.
Row-standardisation of row-independent random real triangular array
Formulation 0
Let $\{ X_{n, m} \}_{n \geq 1, \, 1 \leq m \leq M_n}$ be a D5164: Random real standard triangular array such that
(i) $X_{n, 1}, \dots, X_{n, n}$ is an D2713: Independent random collection for each $n \geq 1$
(ii) $\mu_{n, m} : = \mathbb{E} X_{n, m} \in \mathbb{R}$
(iii) $\sigma^2_{n, m} : = \text{Var} X_{n, m} \in (0, \infty)$
(iv) \begin{equation} s^2_n : = \sum_{m = 1}^{M_n} \sigma^2_{n, m} \end{equation}
(v) \begin{equation} Z_{n, m} : = \frac{X_{n, m} - \mu_{n, m}}{s_n} \end{equation}
Then
(1) \begin{equation} \mathbb{E} (Z_{n, m}) = 0 \end{equation}
(2) \begin{equation} \text{Var}(Z_{n, m}) = 1 \end{equation}
Subresults
R3869: Row-standardisation of row-independent random real standard triangular array
Proofs
Proof 0
Let $\{ X_{n, m} \}_{n \geq 1, \, 1 \leq m \leq M_n}$ be a D5164: Random real standard triangular array such that
(i) $X_{n, 1}, \dots, X_{n, n}$ is an D2713: Independent random collection for each $n \geq 1$
(ii) $\mu_{n, m} : = \mathbb{E} X_{n, m} \in \mathbb{R}$
(iii) $\sigma^2_{n, m} : = \text{Var} X_{n, m} \in (0, \infty)$
(iv) \begin{equation} s^2_n : = \sum_{m = 1}^{M_n} \sigma^2_{n, m} \end{equation}
(v) \begin{equation} Z_{n, m} : = \frac{X_{n, m} - \mu_{n, m}}{s_n} \end{equation}
Since $X_{n, 1}, \ldots, X_{n, M_n}$ are independent for each $n \geq 1$, applying results
(i) R3396: Variance is translation invariant
(ii) R3627: Variance of independent finite basic real sum is sum of variances
(iii) R2355: Variance is homogeneous to degree two

one has \begin{equation} \begin{split} \sum_{m = 1}^{M_n} \text{Var}(Z_{n, m}) & = \sum_{m = 1}^{M_n} \text{Var} \left( \frac{X_{n, m} - \mu_{n, m}}{s_n} \right) \\ & = \sum_{m = 1}^{M_n} \text{Var} \left( \frac{X_{n, m}}{s_n} \right) \\ & = \frac{1}{s^2_n} \sum_{m = 1}^{M_n} \text{Var} ( X_{n, m} ) \\ & = \frac{1}{s^2_n} \sum_{m = 1}^{M_n} \sigma^2_{n, m} \\ & = \frac{1}{s^2_n} s^2_n \\ & = 1 \end{split} \end{equation} Finally, R3791: Linearity of signed basic expectation implies \begin{equation} \mathbb{E} (Z_{n, m}) = \mathbb{E} (X_{n, m} - \mu_{n, m}) = \mathbb{E} (X_{n, m}) - \mu_{n, m} = \mu_{n, m} - \mu_{n, m} = 0 \end{equation} $\square$