Let $E \in \mathcal{F}_{\Xi}$ be an event in $\Xi$. Since $\mathbb{P}(X = Y) = 1$ and since $\{ X \neq Y \} = \{ X = Y \}^{\complement} = \Omega \setminus \{ X = Y \}$, then result
R3719: Probability of complement event implies
\begin{equation}
\mathbb{P}(X \neq Y)
= 1 - \mathbb{P}(X = Y)
= 1 - 1
= 0
\end{equation}
Thus, applying results
yields
\begin{equation}
\begin{split}
\mathbb{P}(X \in E)
& = \mathbb{P}(X \in E) - 0 \\
& = \mathbb{P}(X \in E) - \mathbb{P}(X \neq Y) \\
& = \mathbb{P}( \{ X \in E \} \setminus \{ X \neq Y \} ) \\
& = \mathbb{P}[ \{ X \in E \} \setminus (\{ X \in E \} \cap \{ X \neq Y \}) ] \\
& = \mathbb{P}[ (\Omega \cap \{ X \in E \}) \setminus (\{ X \in E \} \cap \{ X \neq Y \}) ] \\
& = \mathbb{P}[ \{ X \in E \} \cap (\Omega \setminus \{ X \neq Y \}) ] \\
& = \mathbb{P}( \{ X \in E \} \cap \{ X = Y \} ) \\
& = \mathbb{P}( \{ Y \in E \} \cap \{ X = Y \} ) \\
& = \mathbb{P}( \{ Y \in E \} \cap \Omega \setminus \{ X \neq Y \} ) \\
& = \mathbb{P}[ (\Omega \cap \{ Y \in E \}) \setminus (\{ Y \in E \} \cap \{ X \neq Y \}) ] \\
& = \mathbb{P}[ \{ Y \in E \} \setminus (\{ Y \in E \} \cap \{ X \neq Y \}) ] \\
& = \mathbb{P}( \{ Y \in E \} \setminus \{ X \neq Y \} ) \\
& = \mathbb{P}(Y \in E) - \mathbb{P}(X \neq Y) \\
& = \mathbb{P}(Y \in E) - 0 \\
& = \mathbb{P}(Y \in E)
\end{split}
\end{equation}
We may also opt to write the above in the equivalent form
\begin{equation}
\begin{split}
\mathbb{P}(X \in E)
& = \mathbb{P}(X \in E) - 0 \\
& = \mathbb{P}(X \in E) - \mathbb{P}(X \neq Y) \\
& = \mathbb{P}(X \in E \text{ and not } X \neq Y) \\
& = \mathbb{P}(X \in E \text{ and } X = Y) \\
& = \mathbb{P}(Y \in E \text{ and } X = Y) \\
& = \mathbb{P}(Y \in E \text{ and not } X \neq Y) \\
& = \mathbb{P}(Y \in E) - \mathbb{P}(X \neq Y) \\
& = \mathbb{P}(Y \in E) - 0 \\
& = \mathbb{P}(Y \in E)
\end{split}
\end{equation}
Since $E \in \mathcal{F}_{\Xi}$ was arbitrary, we may conclude $X \overset{d}{=} Y$. $\square$