Let $X_1, \ldots, X_N \in \mathsf{Random}(\mathbb{R})$ each be a D3161: Random real number such that
(i) | \begin{equation} N > 1 \end{equation} |
(ii) | \begin{equation} \overline{X}_N : = \frac{1}{N} \sum_{n = 1}^N X_n \end{equation} |
(iii) | \begin{equation} S^2_N : = \frac{1}{N - 1} \sum_{n = 1}^N (X_n - \overline{X}_N)^2 \end{equation} |
Then
\begin{equation}
\sum_{n = 1}^N X^2_n
= (N - 1) S^2_N + N \overline{X}^2_N
\end{equation}