ThmDex – An index of mathematical definitions, results, and conjectures.
Result R4055 on D467: Injective map
Singleton map is injection from set to power set
Formulation 0
Let $X$ be a D11: Set such that
(i) $\mathcal{P}(X)$ is the D80: Power set of $X$
Let $f : X \to \mathcal{P}(X)$ be a D18: Map such that
(i) \begin{equation} f(x) : = \{ x \} \end{equation}
Then $f$ is an D467: Injective map from $X$ to $Y$.
Proofs
Proof 0
Let $X$ be a D11: Set such that
(i) $\mathcal{P}(X)$ is the D80: Power set of $X$
Let $f : X \to \mathcal{P}(X)$ be a D18: Map such that
(i) \begin{equation} f(x) : = \{ x \} \end{equation}
Since $\{ \{ x \} : x \in X \} \subseteq \mathcal{P}(X)$, this result is a consequence of the results
(i) R2764: Canonical singleton map is bijection
(ii) R4056: Extending codomain preserves injectivity

$\square$