ThmDex – An index of mathematical definitions, results, and conjectures.
Determinant of real diagonal matrix with constant diagonal
Formulation 0
Let $A \in \mathbb{R}^{N \times N}$ be a D6160: Real square matrix such that
(i) $\lambda \in \mathbb{R}$ is a D993: Real number
(ii) \begin{equation} A = \begin{bmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \vdots & 0 \\ \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{bmatrix} \end{equation}
Then \begin{equation} \text{Det} A = \lambda^N \end{equation}
Formulation 1
Let $A \in \mathbb{R}^{N \times N}$ be a D6160: Real square matrix such that
(i) $\lambda \in \mathbb{R}$ is a D993: Real number
(ii) $I_N \in \mathbb{R}^{N \times N}$ is a D5621: Real identity matrix
(iii) $A = \lambda I_N$
Then \begin{equation} \text{Det} A = \lambda^N \end{equation}
Proofs
Proof 0
Let $A \in \mathbb{R}^{N \times N}$ be a D6160: Real square matrix such that
(i) $\lambda \in \mathbb{R}$ is a D993: Real number
(ii) \begin{equation} A = \begin{bmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \vdots & 0 \\ \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{bmatrix} \end{equation}
This result is a particular case of R4106: Determinant of real diagonal matrix. $\square$