ThmDex – An index of mathematical definitions, results, and conjectures.
Absolute value function is not strictly antitone
Formulation 0
Let $x \mapsto |x|$ be the D412: Absolute value function.
Then
(1) \begin{equation} 0 < 1 \end{equation}
(2) \begin{equation} |0| < |1| \end{equation}
Proofs
Proof 0
Let $x \mapsto |x|$ be the D412: Absolute value function.
The first assertion is clear. By definition of the D412: Absolute value function, both $0$ and $1$ are mapped to themselves (are fixed points). Thus, $|0| = 0 < 1 = |1|$. $\square$