ThmDex – An index of mathematical definitions, results, and conjectures.
Standard natural real exponential function maps zero to one
Formulation 0
Then \begin{equation} e^0 = 1 \end{equation}
Formulation 1
Then \begin{equation} \exp(0) = 1 \end{equation}
Proofs
Proof 0
Proceeding directly from the definitions, we have \begin{equation} e^0 = \sum_{n = 0}^{\infty} \frac{0^n}{n!} = 0^0 + \sum_{n = 1}^{\infty} \frac{0^n}{n!} = 1 + 0 = 1 \end{equation} since $x^0 = 1$ for every $x \in \mathbb{R}$ and $0^n = 0$ for every integer $n \geq 1$. $\square$