Let $M = (\mathbb{R}, \mathcal{L}, \ell)$ be the D5268: Real lebesgue measure space such that
Let $g, h : \mathbb{R} \to \mathbb{C}$ each be a D4881: Complex function such that
(i) | $M_{\times} = (\mathbb{R} \times \mathbb{R}, \mathcal{L} \times \mathcal{L}, \ell \times \ell)$ is a D2706: Product measure space of $M$ with itself |
(ii) | $f : \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ is an D1921: Absolutely integrable function on $M_{\times}$ |
(i) | \begin{equation} \forall \, x, y \in \mathbb{R} : f(x, y) = g(x) h(y) \end{equation} |
Then
\begin{equation}
\int_{\mathbb{R} \times \mathbb{R}} f \, d (\ell \times \ell)
= \left( \int_{\mathbb{R}} g(x) \, \ell(d x) \right) \left( \int_{\mathbb{R}} h(y) \, \ell(d y) \right)
\end{equation}