Let $X, Y \in \text{Random}(\mathbb{R}^D)$ each be a D4383: Random euclidean real number such that
(i) | $\cdot$ is the D743: Euclidean real dot product operation on $\mathbb{R}^D$ |
Then
\begin{equation}
\forall \, t \in \mathbb{R}^D :
\mathbb{E}(e^{i t \cdot X}) = \mathbb{E}(e^{i t \cdot Y})
\quad \iff \quad
X \overset{d}{=} Y
\end{equation}