Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
Let $[a, b] \subseteq [-\infty, \infty]$ be a D4658: Closed basic interval such that
(i) | $X : \Omega \to \mathbb{R}$ is a D3161: Random real number on $P$ |
(ii) | \begin{equation} \mathbb{E} |X| < \infty \end{equation} |
(i) | \begin{equation} a \overset{a.s.}{\leq} X \overset{a.s.}{\leq} b \end{equation} |
Then
(1) | \begin{equation} a \leq \mathbb{E} X \leq b \end{equation} |
(2) | \begin{equation} \mathbb{E} X = a \quad \iff \quad X \overset{a.s.}{=} a \end{equation} |
(3) | \begin{equation} \mathbb{E} X = b \quad \iff \quad X \overset{a.s.}{=} b \end{equation} |