ThmDex – An index of mathematical definitions, results, and conjectures.
Result R4512 on D1748: Signed basic integral
Subresult of R4500:
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : \Omega \to \mathbb{R}$ is a D3161: Random real number on $P$
(ii) \begin{equation} \mathbb{E} |X| < \infty \end{equation}
Let $[a, b] \subseteq [-\infty, \infty]$ be a D4658: Closed basic interval such that
(i) \begin{equation} a \overset{a.s.}{\leq} X \overset{a.s.}{\leq} b \end{equation}
Then
(1) \begin{equation} a \leq \mathbb{E} X \leq b \end{equation}
(2) \begin{equation} \mathbb{E} X = a \quad \iff \quad X \overset{a.s.}{=} a \end{equation}
(3) \begin{equation} \mathbb{E} X = b \quad \iff \quad X \overset{a.s.}{=} b \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : \Omega \to \mathbb{R}$ is a D3161: Random real number on $P$
(ii) \begin{equation} \mathbb{E} |X| < \infty \end{equation}
Let $[a, b] \subseteq [-\infty, \infty]$ be a D4658: Closed basic interval such that
(i) \begin{equation} \mathbb{P}(X \in [a, b]) = 1 \end{equation}
Then
(1) \begin{equation} \mathbb{E} X \in [a, b] \end{equation}
(2) \begin{equation} \mathbb{E} X = a \quad \iff \quad X \overset{a.s.}{=} a \end{equation}
(3) \begin{equation} \mathbb{E} X = b \quad \iff \quad X \overset{a.s.}{=} b \end{equation}
Proofs
Proof 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $X : \Omega \to \mathbb{R}$ is a D3161: Random real number on $P$
(ii) \begin{equation} \mathbb{E} |X| < \infty \end{equation}
Let $[a, b] \subseteq [-\infty, \infty]$ be a D4658: Closed basic interval such that
(i) \begin{equation} a \overset{a.s.}{\leq} X \overset{a.s.}{\leq} b \end{equation}
This result is a particular case of R4500: . $\square$